Cantilever beam - Concentrated load P at any point Calculator
Formula
Deflection \(y\) |
\(y_{AC} = \frac{6EI}{-P} (3ax^2 - x^3)\) |
\(y_{CB} = \frac{6EI}{-Pa^2} (a-x)^2(3x-a)\) |
Deflection at \(x = L\) (\(y_{MAx} = y_B\)) |
\(y_{MAx} = y_B = -\frac{Pa^2}{6EI}(3L-a)\) |
Slope \(\theta\) |
\(\theta_{AC} = -\frac{P}{2EI}(2ax - x^2)\) |
\(\theta_{CB} = \theta_C = \theta_B = -\frac{Pa^2}{2EI}\) |
Moment \(M\) |
\(M_{AC} = -P(a-x)\) |
\(M_{CB} = M_C = M_B = 0\) |
Moment at \(x = a\) (\(M_{MAx} = M_A\)) |
\(M_{MAx} = M_A = -Pa\) |
Shear \(V\) |
\(V_{AC} = V_A = V_C = P\) |
\(V_{CB} = V_C = V_B = 0\) |
Reactions \(R\) |
\(R_A = P\) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |