Home Back

Cantilever beam - Cosinusoidal distributed load Calculator











π = 3.1415926




Formula

Quantity Formula
Deflection \(y_{AB}\) \[ y_{AB} = \frac{-w_0 L}{3\pi^4 EI} \left( 48L^3 \cos \frac{\pi x}{2L} - 48L^3 + 3\pi^3 Lx^2 - \pi^3 x^3 \right) \]
Maximum Deflection \(y_{MAX}\) \[ y_{MAX} = \frac{-2w_0 L^4}{3\pi^4 EI} (\pi^3 - 24) \quad \text{at } x = L \]
Slope \(\theta_{AB}\) \[ \theta_{AB} = \frac{-w_0 L}{\pi^3 EI} \left( 2\pi^2 Lx - \pi^2 x^2 - 8L^2 \sin \frac{\pi x}{2L} \right) \]
Slope at B \(\theta_B\) \[ \theta_B = \frac{-w_0 L^3}{\pi^3 EI} (\pi^2 - 8) \]
Moment \(M_{AB}\) \[ M_{AB} = \frac{-2w_0 L}{\pi^2} \left( \pi L - \pi x - 2L \cos \frac{\pi x}{2L} \right) \]
Shear \(V_{AB}\) \[ V_{AB} = \frac{2w_0 L}{\pi} \left( 1 - \sin \frac{\pi x}{2L} \right) \]
Reactions \(R_A\) \[ R_A = \frac{2w_0 L}{\pi} \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024