Cantilever beam - Cosinusoidal distributed load Calculator
Formula
Quantity |
Formula |
Deflection \(y_{AB}\) |
\[
y_{AB} = \frac{-w_0 L}{3\pi^4 EI} \left( 48L^3 \cos \frac{\pi x}{2L} - 48L^3 + 3\pi^3 Lx^2 - \pi^3 x^3 \right)
\] |
Maximum Deflection \(y_{MAX}\) |
\[
y_{MAX} = \frac{-2w_0 L^4}{3\pi^4 EI} (\pi^3 - 24) \quad \text{at } x = L
\] |
Slope \(\theta_{AB}\) |
\[
\theta_{AB} = \frac{-w_0 L}{\pi^3 EI} \left( 2\pi^2 Lx - \pi^2 x^2 - 8L^2 \sin \frac{\pi x}{2L} \right)
\] |
Slope at B \(\theta_B\) |
\[
\theta_B = \frac{-w_0 L^3}{\pi^3 EI} (\pi^2 - 8)
\] |
Moment \(M_{AB}\) |
\[
M_{AB} = \frac{-2w_0 L}{\pi^2} \left( \pi L - \pi x - 2L \cos \frac{\pi x}{2L} \right)
\] |
Shear \(V_{AB}\) |
\[
V_{AB} = \frac{2w_0 L}{\pi} \left( 1 - \sin \frac{\pi x}{2L} \right)
\] |
Reactions \(R_A\) |
\[
R_A = \frac{2w_0 L}{\pi}
\] |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |