Home Back

Cantilever beam - Couple moment Mo at any point Calculator















Formula

Parameter Formula
Deflection \(y_{AC}\) \(y_{AC} = \frac{M_0 x^2}{2EI}\)
Deflection \(y_{CB}\) \(y_{CB} = \frac{M_0 a}{2EI} (2x - a)\)
Deflection at \(x = L\) (\(y_{MAx}\) for segment AC) \(y_{MAx} = \frac{M_0 a}{2EI} (2L - a)\)
Slope \(\theta_{AC}\) \(\theta_{AC} = \frac{M_0 x}{EI}\)
Slope \(\theta_{CB}\) (\(\theta_C = \theta_B\)) \(\theta_{CB} = \theta_C = \theta_B = \frac{M_0 a}{EI}\)
Moment \(M_{AC}\) (\(M_A\)) \(M_{AC} = M_A = -M_0\)
Moment \(M_{CB}\) (\(M_B\)) \(M_{CB} = M_B = 0\)
Shear \(V_{AC}\) (\(V_A = V_C\)) \(V_{AC} = V_A = V_C = 0\)
Shear \(V_{CB}\) (\(V_C = V_B\)) \(V_{CB} = V_C = V_B = 0\)
Reactions \(R_A\) \(R_A = 0\)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024