Cantilever beam - Couple moment Mo at any point Calculator
Formula
Parameter |
Formula |
Deflection \(y_{AC}\) |
\(y_{AC} = \frac{M_0 x^2}{2EI}\) |
Deflection \(y_{CB}\) |
\(y_{CB} = \frac{M_0 a}{2EI} (2x - a)\) |
Deflection at \(x = L\) (\(y_{MAx}\) for segment AC) |
\(y_{MAx} = \frac{M_0 a}{2EI} (2L - a)\) |
Slope \(\theta_{AC}\) |
\(\theta_{AC} = \frac{M_0 x}{EI}\) |
Slope \(\theta_{CB}\) (\(\theta_C = \theta_B\)) |
\(\theta_{CB} = \theta_C = \theta_B = \frac{M_0 a}{EI}\) |
Moment \(M_{AC}\) (\(M_A\)) |
\(M_{AC} = M_A = -M_0\) |
Moment \(M_{CB}\) (\(M_B\)) |
\(M_{CB} = M_B = 0\) |
Shear \(V_{AC}\) (\(V_A = V_C\)) |
\(V_{AC} = V_A = V_C = 0\) |
Shear \(V_{CB}\) (\(V_C = V_B\)) |
\(V_{CB} = V_C = V_B = 0\) |
Reactions \(R_A\) |
\(R_A = 0\) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |