Cantilever beam - Load increasing uniformly to fixed end Calculator
Formula
Parameter |
Formula |
Deflection (\(y_{AB}\)) |
\(-\frac{w_0 x^2}{120LEI} (10L^3 - 10L^2x + 5Lx^2 - x^3)\) |
Maximum Deflection (\(y_{MAX}\)) |
\(\frac{w_0 L^4}{30EI}\) at \(x = L\) |
Slope (\(\theta_{AB}\)) |
\(-\frac{w_0 x}{24LEI} (4L^3 - 6L^2x + 4Lx^2 - x^3)\) |
Slope at B (\(\theta_B\)) |
\(-\frac{w_0 L^3}{24EI}\) |
Moment (\(M_{AB}\)) |
\(-\frac{w_0}{6L} (L - x)^3\) |
Shear (\(V_{AB}\)) |
\(\frac{w_0}{2L} (L - x)^2\) |
Reactions (\(R_A\)) |
\(\frac{w_0 L}{2}\) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |