Cantilever beam - Uniform load partially distributed Calculator
Formula
Parameter |
Formula |
Deflection (\(y_{AC}\)) |
\(-\frac{w_0 b x^2}{12EI} (6a + 3b - 2x)\) |
Deflection (\(y_{CD}\)) |
\(-\frac{w_0}{24EI} (x^4 - 4(a+b)x^3 + 6(a+b)^2x^2 - 4a^3x + a^4)\) |
Deflection (\(y_{DB}\)) |
\(-\frac{w_0}{24EI} \left[4x((a+b)^3 - a^3) - (a+b)^4 + a^4\right]\) |
Slope (\(\theta_{AC}\)) |
\(-\frac{w_0 b x}{2EI} (2a + b - x)\) |
Slope (\(\theta_{CD}\)) |
\(-\frac{w_0}{6EI} (x^3 - 3(a+b)x^2 + 3(a+b)^2x - a^3)\) |
Slope (\(\theta_{DB}\)) |
\(-\frac{w_0}{6EI} ((a+b)^3 - a^3)\) |
Moment (\(M_{AC}\)) |
\(-\frac{w_0 b}{2} (2a + b - 2x)\) |
Moment (\(M_{CD}\)) |
\(-\frac{w_0}{2} (a+b-x)^2\) |
Moment (\(M_{DB}\)) |
\(M_{DB} = M_D = M_B = 0\) |
Shear (\(V_{AC}\)) |
\(V_{AC} = V_A = V_C = w_0 b\) |
Shear (\(V_{CD}\)) |
\(V_{CD} = w_0(a+b-x)\) |
Shear (\(V_{DB}\)) |
\(V_{DB} = V_D = V_B = 0\) |
Reactions (\(R_A\)) |
\(R_A = w_0 b\) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |