Home Back

Cantilever beam - Uniform load partially distributed Calculator



















Formula

Parameter Formula
Deflection (\(y_{AC}\)) \(-\frac{w_0 b x^2}{12EI} (6a + 3b - 2x)\)
Deflection (\(y_{CD}\)) \(-\frac{w_0}{24EI} (x^4 - 4(a+b)x^3 + 6(a+b)^2x^2 - 4a^3x + a^4)\)
Deflection (\(y_{DB}\)) \(-\frac{w_0}{24EI} \left[4x((a+b)^3 - a^3) - (a+b)^4 + a^4\right]\)
Slope (\(\theta_{AC}\)) \(-\frac{w_0 b x}{2EI} (2a + b - x)\)
Slope (\(\theta_{CD}\)) \(-\frac{w_0}{6EI} (x^3 - 3(a+b)x^2 + 3(a+b)^2x - a^3)\)
Slope (\(\theta_{DB}\)) \(-\frac{w_0}{6EI} ((a+b)^3 - a^3)\)
Moment (\(M_{AC}\)) \(-\frac{w_0 b}{2} (2a + b - 2x)\)
Moment (\(M_{CD}\)) \(-\frac{w_0}{2} (a+b-x)^2\)
Moment (\(M_{DB}\)) \(M_{DB} = M_D = M_B = 0\)
Shear (\(V_{AC}\)) \(V_{AC} = V_A = V_C = w_0 b\)
Shear (\(V_{CD}\)) \(V_{CD} = w_0(a+b-x)\)
Shear (\(V_{DB}\)) \(V_{DB} = V_D = V_B = 0\)
Reactions (\(R_A\)) \(R_A = w_0 b\)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024