Home Back

Cantilever beam - Uniform load partially distributed at fixed end Calculator















Formula

Category Formula
Deflection (\( y_{AC} \)) \[ y_{AC} = \frac{-w_0}{24EI} \left( 6a^2x^2 - 4ax^3 + x^4 \right) \]
Deflection (\( y_{CB} \)) \[ y_{CB} = \frac{-w_0a^3}{24EI} (4x - a) \]
Maximum Deflection (\( y_{\text{MAX}} = y_B \)) \[ y_{\text{MAX}} = y_B = \frac{-w_0a^3}{24EI}(4L - a) \]
Slope (\( \theta_{AC} \)) \[ \theta_{AC} = \frac{-w_0}{6EI}(3a^2x - 3ax^2 + x^3) \]
Slope (\( \theta_{CB} = \theta_C = \theta_B \)) \[ \theta_{CB} = \theta_C = \theta_B = \frac{-w_0a^3}{6EI} \]
Moment (\( M_{AC} \)) \[ M_{AC} = \frac{-w_0}{2}(a - x)^2 \]
Moment (\( M_{CB} = M_C = M_B \)) \[ M_{CB} = M_C = M_B = 0 \]
Maximum Moment (\( M_{\text{MAX}} = M_A \)) \[ M_{\text{MAX}} = M_A = \frac{-w_0a^2}{2} \]
Shear (\( V_{AC} \)) \[ V_{AC} = w_0(a - x) \]
Shear (\( V_{CB} = V_C = V_B \)) \[ V_{CB} = V_C = V_B = 0 \]
Reaction (\( R_A \)) \[ R_A = w_0a \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024