Cantilever beam - Uniform load partially distributed at fixed end Calculator
Formula
Category |
Formula |
Deflection (\( y_{AC} \)) |
\[
y_{AC} = \frac{-w_0}{24EI} \left( 6a^2x^2 - 4ax^3 + x^4 \right)
\] |
Deflection (\( y_{CB} \)) |
\[
y_{CB} = \frac{-w_0a^3}{24EI} (4x - a)
\] |
Maximum Deflection (\( y_{\text{MAX}} = y_B \)) |
\[
y_{\text{MAX}} = y_B = \frac{-w_0a^3}{24EI}(4L - a)
\] |
Slope (\( \theta_{AC} \)) |
\[
\theta_{AC} = \frac{-w_0}{6EI}(3a^2x - 3ax^2 + x^3)
\] |
Slope (\( \theta_{CB} = \theta_C = \theta_B \)) |
\[
\theta_{CB} = \theta_C = \theta_B = \frac{-w_0a^3}{6EI}
\] |
Moment (\( M_{AC} \)) |
\[
M_{AC} = \frac{-w_0}{2}(a - x)^2
\] |
Moment (\( M_{CB} = M_C = M_B \)) |
\[
M_{CB} = M_C = M_B = 0
\] |
Maximum Moment (\( M_{\text{MAX}} = M_A \)) |
\[
M_{\text{MAX}} = M_A = \frac{-w_0a^2}{2}
\] |
Shear (\( V_{AC} \)) |
\[
V_{AC} = w_0(a - x)
\] |
Shear (\( V_{CB} = V_C = V_B \)) |
\[
V_{CB} = V_C = V_B = 0
\] |
Reaction (\( R_A \)) |
\[
R_A = w_0a
\] |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |