Home Back

Cantilever beam - Uniform load partially distributed at free end Calculator

















Formula

Category Formula
Deflection (\( y_{AC} \)) \[ y_{AC} = \frac{-w_0 b x^2}{12EI}(3L + 3a - 2x) \]
Deflection (\( y_{CB} \)) \[ y_{CB} = \frac{-w_0}{24EI}(x^4 - 4Lx^3 + 6L^2x^2 - 4a^3x + a^4) \]
Slope (\( \theta_{AC} \)) \[ \theta_{AC} = \frac{-w_0 b x}{2EI}(L + a - x) \]
Slope (\( \theta_{CB} \)) \[ \theta_{CB} = \frac{-w_0}{6EI}(x^3 - 3Lx^2 + 3L^2x - a^3) \]
Slope at B (\( \theta_B \)) \[ \theta_B = \frac{-w_0}{6EI}(L^3 - a^3) \]
Moment (\( M_{AC} \)) \[ M_{AC} = \frac{-w_0 b}{2}(L + a - 2x) \]
Moment (\( M_{CB} \)) \[ M_{CB} = \frac{-w_0}{2}(L - x)^2 \]
Shear (\( V_{AC} \), \( V_A \), \( V_C \)) \[ V_{AC} = V_A = V_C = w_0 b \]
Shear (\( V_{CB} \)) \[ V_{CB} = w_0(L - x) \]
Reactions (\( R_A \)) \[ R_A = w_0 b \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024