Cantilever beam - Uniform load partially distributed at free end Calculator
Formula
Category |
Formula |
Deflection (\( y_{AC} \)) |
\[
y_{AC} = \frac{-w_0 b x^2}{12EI}(3L + 3a - 2x)
\] |
Deflection (\( y_{CB} \)) |
\[
y_{CB} = \frac{-w_0}{24EI}(x^4 - 4Lx^3 + 6L^2x^2 - 4a^3x + a^4)
\] |
Slope (\( \theta_{AC} \)) |
\[
\theta_{AC} = \frac{-w_0 b x}{2EI}(L + a - x)
\] |
Slope (\( \theta_{CB} \)) |
\[
\theta_{CB} = \frac{-w_0}{6EI}(x^3 - 3Lx^2 + 3L^2x - a^3)
\] |
Slope at B (\( \theta_B \)) |
\[
\theta_B = \frac{-w_0}{6EI}(L^3 - a^3)
\] |
Moment (\( M_{AC} \)) |
\[
M_{AC} = \frac{-w_0 b}{2}(L + a - 2x)
\] |
Moment (\( M_{CB} \)) |
\[
M_{CB} = \frac{-w_0}{2}(L - x)^2
\] |
Shear (\( V_{AC} \), \( V_A \), \( V_C \)) |
\[
V_{AC} = V_A = V_C = w_0 b
\] |
Shear (\( V_{CB} \)) |
\[
V_{CB} = w_0(L - x)
\] |
Reactions (\( R_A \)) |
\[
R_A = w_0 b
\] |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |