Home Back

Cantilever beam - Uniformly distributed load Calculator













Formula

Category Formula
Deflection (\( y_{AB} \)) \[ y_{AB} = \frac{-w_0}{24EI}(x^4 - 4Lx^3 + 6L^2x^2) \]
Maximum Deflection (\( y_{\text{MAX}} = y_B \)) \[ y_{\text{MAX}} = y_B = \frac{-w_0 L^4}{8EI} \quad \text{at } x = L \]
Slope (\( \theta_{AB} \)) \[ \theta_{AB} = \frac{-w_0}{6EI}(x^3 - 3Lx^2 + 3L^2x) \]
Slope at B (\( \theta_B \)) \[ \theta_B = \frac{-w_0 L^3}{6EI} \]
Moment (\( M_{AB} \)) \[ M_{AB} = \frac{-w_0}{2}(L - x)^2 \]
Maximum Moment (\( M_{\text{MAX}} = M_A \)) \[ M_{\text{MAX}} = M_A = \frac{-w_0 L^2}{2} \]
Shear (\( V_{AB} \)) \[ V_{AB} = w_0(L - x) \]
Reactions (\( R_A \)) \[ R_A = w_0 L \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024