Fixed-fixed beam - Concentrated load at any point Calculator
Formula
Category |
Formula |
Deflection (\( y_{AC} \)) |
\[
y_{AC} = \frac{-Pb^2x^2}{6EI L^3}(3aL - 3ax - bx)
\] |
Deflection (\( y_{CB} \)) |
\[
y_{CB} = \frac{-Pa^2(L - x)^2}{6EI L^3}(3bx - aL + ax)
\] |
Slope (\( \theta_{AC} \)) |
\[
\theta_{AC} = \frac{-Pb^2x}{2EI L^3}(2aL - 3ax - bx)
\] |
Slope (\( \theta_{CB} \)) |
\[
\theta_{CB} = \frac{Pa^2(L - x)}{2EI L^3} \left[x(3b + a) - L^2 \right]
\] |
Moment (\( M_{AC} \)) |
\[
M_{AC} = \frac{-Pb^2x}{L^3}(aL - 3ax - bx)
\] |
Moment (\( M_{CB} \)) |
\[
M_{CB} = \frac{Pa^2}{L^3}(L^2 + bL - Lx - 2bx)
\] |
Shear (\( V_{AC} \)) |
\[
V_{AC} = \frac{Pb^2}{L^3}(L + 2a)
\] |
Shear (\( V_{CB} \)) |
\[
V_{CB} = \frac{-Pa^2}{L^3}(L + 2b)
\] |
Reactions (\( R_A \)) |
\[
R_A = \frac{Pb^2}{L^3}(L + 2a)
\] |
Reactions (\( R_B \)) |
\[
R_B = \frac{Pa^2}{L^3}(L + 2b)
\] |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |