Home Back

Fixed-fixed beam - Concentrated load at center Calculator













Formula

Parameter Formula
Deflection (AC) \( y_{AC} = \frac{-P x^2 (3L - 4x)}{48EI} \)
Deflection (CB) \( y_{CB} = \frac{-P (L - x)^2 (4x - L)}{48EI} \)
Slope (AC) \( \theta_{AC} = \frac{-P x (L - 2x)}{8EI} \)
Slope (CB) \( \theta_{CB} = \frac{-P (L^2 - 3Lx + 2x^2)}{8EI} \)
Moment (AC) \( M_{AC} = \frac{-P (L - 4x)}{8} \)
Moment (CB) \( M_{CB} = \frac{P (3L - 4x)}{8} \)
Shear (AC) \( V_{AC} = \frac{P}{2} \)
Shear (CB) \( V_{CB} = \frac{-P}{2} \)
Reactions \( R_A = R_B = \frac{P}{2} \)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024