Fixed-fixed beam - Concentrated load at center Calculator
Formula
Parameter |
Formula |
Deflection (AC) |
\( y_{AC} = \frac{-P x^2 (3L - 4x)}{48EI} \) |
Deflection (CB) |
\( y_{CB} = \frac{-P (L - x)^2 (4x - L)}{48EI} \) |
Slope (AC) |
\( \theta_{AC} = \frac{-P x (L - 2x)}{8EI} \) |
Slope (CB) |
\( \theta_{CB} = \frac{-P (L^2 - 3Lx + 2x^2)}{8EI} \) |
Moment (AC) |
\( M_{AC} = \frac{-P (L - 4x)}{8} \) |
Moment (CB) |
\( M_{CB} = \frac{P (3L - 4x)}{8} \) |
Shear (AC) |
\( V_{AC} = \frac{P}{2} \) |
Shear (CB) |
\( V_{CB} = \frac{-P}{2} \) |
Reactions |
\( R_A = R_B = \frac{P}{2} \) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |