Fixed-fixed beam - Couple moment Mo at any point Calculator
Formula
Parameter |
Formula |
Deflection (AC) |
\( y_{AC} = \frac{-M_0 b x^2}{2 L^3 EI} (2aL - 2ax - bL) \) |
Deflection (CB) |
\( y_{CB} = \frac{M_0 a (L - x)^2}{2 L^3 EI} (2bx - aL) \) |
Slope (AC) |
\( \theta_{AC} = \frac{-M_0 b x}{L^3 EI} (2aL - 3ax - bL) \) |
Slope (CB) |
\( \theta_{CB} = \frac{M_0 a (L - x)}{L^3 EI} (L^2 - 3bx) \) |
Moment (AC) |
\( M_{AC} = \frac{-M_0 b}{L^3} (2aL - 6ax - bL) \) |
Moment (CB) |
\( M_{CB} = \frac{M_0 a}{L^3} (6bx - 4bL - aL) \) |
Shear |
\( V_{AB} = \frac{6M_0 ab}{L^3} \) |
Reactions (RA) |
\( R_A = \frac{6M_0 ab}{L^3} \) |
Reactions (RB) |
\( R_B = \frac{-6M_0 ab}{L^3} \) |
Where (MA) |
\( M_A = \frac{-M_0 b}{L^2} (2a - b) \) |
Where (MB) |
\( M_B = \frac{M_0 a}{L^2} (2b - a) \) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |