Home Back

Fixed-fixed beam - Couple moment Mo at any point Calculator

















Formula

Parameter Formula
Deflection (AC) \( y_{AC} = \frac{-M_0 b x^2}{2 L^3 EI} (2aL - 2ax - bL) \)
Deflection (CB) \( y_{CB} = \frac{M_0 a (L - x)^2}{2 L^3 EI} (2bx - aL) \)
Slope (AC) \( \theta_{AC} = \frac{-M_0 b x}{L^3 EI} (2aL - 3ax - bL) \)
Slope (CB) \( \theta_{CB} = \frac{M_0 a (L - x)}{L^3 EI} (L^2 - 3bx) \)
Moment (AC) \( M_{AC} = \frac{-M_0 b}{L^3} (2aL - 6ax - bL) \)
Moment (CB) \( M_{CB} = \frac{M_0 a}{L^3} (6bx - 4bL - aL) \)
Shear \( V_{AB} = \frac{6M_0 ab}{L^3} \)
Reactions (RA) \( R_A = \frac{6M_0 ab}{L^3} \)
Reactions (RB) \( R_B = \frac{-6M_0 ab}{L^3} \)
Where (MA) \( M_A = \frac{-M_0 b}{L^2} (2a - b) \)
Where (MB) \( M_B = \frac{M_0 a}{L^2} (2b - a) \)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024