Fixed-fixed beam - Couple moment Mo at center Calculator
Formula
Quantity | Formula |
---|---|
Deflection (AC) | \( y_{AC} = \frac{M_0 x^2}{8 L E I} (2x - L) \) |
Deflection (CB) | \( y_{CB} = -\frac{M_0}{8 L E I} \left(5Lx^2 - 2x^3 - 4L^2x + L^3\right) \) |
Slope (AC) | \( \theta_{AC} = \frac{M_0 x}{4 L E I} (3x - L) \) |
Slope (CB) | \( \theta_{CB} = -\frac{M_0}{8 L E I} \left(10Lx - 6x^2 - 4L^2\right) \) |
Moment (AC) | \( M_{AC} = \frac{M_0}{4 L} (6x - L) \) |
Moment (CB) | \( M_{CB} = -\frac{M_0}{4 L} (5L - 6x) \) |
Shear | \( V_{AB} = \frac{3 M_0}{2 L} \) |
Reaction (RA) | \( R_A = \frac{3 M_0}{2 L} \) |
Reaction (RB) | \( R_B = -\frac{3 M_0}{2 L} \) |
Definitions
Symbol | Physical quantity | Units |
---|---|---|
E·I | Flexural rigidity | N·m², Pa·m⁴ |
y | Deflection or deformation | m |
θ | Slope, Angle of rotation | - |
x | Distance from support (origin) | m |
L | Length of beam (without overhang) | m |
M | Moment, Bending moment, Couple moment applied | N·m |
P | Concentrated load, Point load, Concentrated force | N |
w | Distributed load, Load per unit length | N/m |
R | Reaction load, reaction force | N |
V | Shear force, shear | N |
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024