Fixed-fixed beam - Two equal concentrated loads symmetrically placed Calculator
Formula
Quantity |
Formula |
Deflection \(y_{AC}\) |
\[
y_{AC} = \frac{-Px^2}{6EIL} \left(3aL - 3a^2 - Lx\right)
\] |
Deflection \(y_{CD}\) |
\[
y_{CD} = \frac{-Pa^2}{6EIL} \left(3Lx - 3x^2 - aL\right)
\] |
Deflection \(y_{DB}\) |
\[
y_{DB} = \frac{-P(L-x)^2}{6EIL} \left(3aL - 3a^2 - L(L-x)\right)
\] |
Slope \(\theta_{AC}\) |
\[
\theta_{AC} = \frac{-Px}{2EIL} \left(2aL - 2a^2 - Lx\right)
\] |
Slope \(\theta_{CD}\) |
\[
\theta_{CD} = \frac{-Pa^2}{2EIL} \left(L - 2x\right)
\] |
Slope \(\theta_{DB}\) |
\[
\theta_{DB} = \frac{P(L-x)}{2EIL} \left[2aL - 2a^2 - L(L-x)\right]
\] |
Moment \(M_{AC}\) |
\[
M_{AC} = \frac{P}{L} \left(Lx - aL + a^2\right)
\] |
Moment \(M_{CD}\) |
\[
M_{CD} = \frac{Pa^2}{L}
\] |
Moment \(M_{DB}\) |
\[
M_{DB} = \frac{P}{L} \left(L^2 - Lx - La + a^2\right)
\] |
Shear \(V_{AC}\) |
\[
V_{AC} = P
\] |
Shear \(V_{CD}\) |
\[
V_{CD} = 0
\] |
Shear \(V_{DB}\) |
\[
V_{DB} = -P
\] |
Reactions \(R_A = R_B\) |
\[
R_A = R_B = P
\] |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |