Home Back

Fixed-fixed beam - Two equal concentrated loads symmetrically placed Calculator















Formula

Quantity Formula
Deflection \(y_{AC}\) \[ y_{AC} = \frac{-Px^2}{6EIL} \left(3aL - 3a^2 - Lx\right) \]
Deflection \(y_{CD}\) \[ y_{CD} = \frac{-Pa^2}{6EIL} \left(3Lx - 3x^2 - aL\right) \]
Deflection \(y_{DB}\) \[ y_{DB} = \frac{-P(L-x)^2}{6EIL} \left(3aL - 3a^2 - L(L-x)\right) \]
Slope \(\theta_{AC}\) \[ \theta_{AC} = \frac{-Px}{2EIL} \left(2aL - 2a^2 - Lx\right) \]
Slope \(\theta_{CD}\) \[ \theta_{CD} = \frac{-Pa^2}{2EIL} \left(L - 2x\right) \]
Slope \(\theta_{DB}\) \[ \theta_{DB} = \frac{P(L-x)}{2EIL} \left[2aL - 2a^2 - L(L-x)\right] \]
Moment \(M_{AC}\) \[ M_{AC} = \frac{P}{L} \left(Lx - aL + a^2\right) \]
Moment \(M_{CD}\) \[ M_{CD} = \frac{Pa^2}{L} \]
Moment \(M_{DB}\) \[ M_{DB} = \frac{P}{L} \left(L^2 - Lx - La + a^2\right) \]
Shear \(V_{AC}\) \[ V_{AC} = P \]
Shear \(V_{CD}\) \[ V_{CD} = 0 \]
Shear \(V_{DB}\) \[ V_{DB} = -P \]
Reactions \(R_A = R_B\) \[ R_A = R_B = P \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024