Fixed-fixed beam - Uniform load partially distributed Calculator
Formula
Quantity |
Formula |
Deflection \(y_{AC}\) |
\[
y_{AC} = \frac{x^2}{6EI}(3M_A + R_A x)
\] |
Deflection \(y_{CD}\) |
\[
y_{CD} = \frac{-1}{24EI} \left[ w_0 (x - a)^4 - 4R_A x^3 - 12M_A x^2 \right]
\] |
Deflection \(y_{DB}\) |
\[
y_{DB} = \frac{3(M_B + L R_B)x^2 - R_B x^3}{6EI}
+ \frac{L^2(3M_B + LR_B) - 3(2M_B + LR_B)Lx}{6EI}
\] |
Slope \(\theta_{AC}\) |
\[
\theta_{AC} = \frac{x}{2EI}(2M_A + R_A x)
\] |
Slope \(\theta_{CD}\) |
\[
\theta_{CD} = \frac{-1}{6EI} \left[ w_0(x - a)^3 - 3R_A x^2 - 6M_A x \right]
\] |
Slope \(\theta_{DB}\) |
\[
\theta_{DB} = \frac{-1}{2EI} \left[ R_B x^2 - 2(M_B + LR_B)x + L(2M_B + LR_B) \right]
\] |
Moment \(M_{AC}\) |
\[
M_{AC} = M_A + R_A x
\] |
Moment \(M_{CD}\) |
\[
M_{CD} = R_A x + M_A - \frac{w_0 (x - a)^2}{2}
\] |
Moment \(M_{DB}\) |
\[
M_{DB} = M_B + R_B (L - x)
\] |
Shear \(V_{AC}\) |
\[
V_{AC} = R_A
\] |
Shear \(V_{CD}\) |
\[
V_{CD} = R_A - w_0 (x - a)
\] |
Shear \(V_{DB}\) |
\[
V_{DB} = -R_B
\] |
Reactions \(R_A\) |
\[
R_A = \frac{w_0(2c + b)b - 2M_A + 2M_B}{2L}
\] |
Reactions \(R_B\) |
\[
R_B = \frac{w_0(2a + b)b + 2M_A - 2M_B}{2L}
\] |
Where \(M_A\) |
\[
M_A = \frac{-w_0 b}{24L^2} \left[ b^2(2L - 6c - 3b) + (6a + 3b)(2c + b)^2 \right]
\] |
Where \(M_B\) |
\[
M_B = \frac{-w_0 b}{24L^2} \left[ b^2(2L - 6a - 3b) + (6c + 3b)(2a + b)^2 \right]
\] |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |