Home Back

Fixed-fixed beam - Uniform load partially distributed Calculator



















Formula

Quantity Formula
Deflection \(y_{AC}\) \[ y_{AC} = \frac{x^2}{6EI}(3M_A + R_A x) \]
Deflection \(y_{CD}\) \[ y_{CD} = \frac{-1}{24EI} \left[ w_0 (x - a)^4 - 4R_A x^3 - 12M_A x^2 \right] \]
Deflection \(y_{DB}\) \[ y_{DB} = \frac{3(M_B + L R_B)x^2 - R_B x^3}{6EI} + \frac{L^2(3M_B + LR_B) - 3(2M_B + LR_B)Lx}{6EI} \]
Slope \(\theta_{AC}\) \[ \theta_{AC} = \frac{x}{2EI}(2M_A + R_A x) \]
Slope \(\theta_{CD}\) \[ \theta_{CD} = \frac{-1}{6EI} \left[ w_0(x - a)^3 - 3R_A x^2 - 6M_A x \right] \]
Slope \(\theta_{DB}\) \[ \theta_{DB} = \frac{-1}{2EI} \left[ R_B x^2 - 2(M_B + LR_B)x + L(2M_B + LR_B) \right] \]
Moment \(M_{AC}\) \[ M_{AC} = M_A + R_A x \]
Moment \(M_{CD}\) \[ M_{CD} = R_A x + M_A - \frac{w_0 (x - a)^2}{2} \]
Moment \(M_{DB}\) \[ M_{DB} = M_B + R_B (L - x) \]
Shear \(V_{AC}\) \[ V_{AC} = R_A \]
Shear \(V_{CD}\) \[ V_{CD} = R_A - w_0 (x - a) \]
Shear \(V_{DB}\) \[ V_{DB} = -R_B \]
Reactions \(R_A\) \[ R_A = \frac{w_0(2c + b)b - 2M_A + 2M_B}{2L} \]
Reactions \(R_B\) \[ R_B = \frac{w_0(2a + b)b + 2M_A - 2M_B}{2L} \]
Where \(M_A\) \[ M_A = \frac{-w_0 b}{24L^2} \left[ b^2(2L - 6c - 3b) + (6a + 3b)(2c + b)^2 \right] \]
Where \(M_B\) \[ M_B = \frac{-w_0 b}{24L^2} \left[ b^2(2L - 6a - 3b) + (6c + 3b)(2a + b)^2 \right] \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024