Fixed-fixed beam - Uniform load partially distributed at left end II Calculator
Formula
Quantity |
Formula |
Deflection \(y_{AC}\) |
\[
y_{AC} = \frac{-x^2}{24EI} \left(w_0 x^2 - 4R_A x - 12M_A \right)
\] |
Deflection \(y_{CB}\) |
\[
y_{CB} = \frac{3(M_B + L R_B)x^2 - R_B x^3}{6EI}
+ \frac{L^2 (3M_B + LR_B) - 3(2M_B + LR_B)Lx}{6EI}
\] |
Slope \(\theta_{AC}\) |
\[
\theta_{AC} = \frac{-x}{6EI} \left(w_0 x^2 - 3R_A x - 6M_A \right)
\] |
Slope \(\theta_{CB}\) |
\[
\theta_{CB} = \frac{-1}{2EI} \left[ R_B x^2 - 2(M_B + L R_B)x + L(2M_B + L R_B) \right]
\] |
Moment \(M_{AC}\) |
\[
M_{AC} = R_A x + M_A - \frac{w_0 x^2}{2}
\] |
Moment \(M_{CB}\) |
\[
M_{CB} = R_B (L - x) + M_B
\] |
Shear \(V_{AC}\) |
\[
V_{AC} = R_A - w_0 x
\] |
Shear \(V_{CB}\) |
\[
V_{CB} = -R_B
\] |
Reaction \(R_A\) |
\[
R_A = \frac{w_0 (L + b) a^2}{2L} - \frac{M_A + M_B}{L}
\] |
Reaction \(R_B\) |
\[
R_B = \frac{w_0 a^2}{2L} + \frac{M_A - M_B}{L}
\] |
Where \(M_A\) |
\[
M_A = \frac{-w_0 a^2}{12L^2} \left(6L^2 - 8La + 3a^2 \right)
\] |
Where \(M_B\) |
\[
M_B = \frac{-w_0 a^3}{12L^2} \left(4L - 3a \right)
\] |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |