Home Back

Fixed-fixed beam - Uniform load partially distributed at left end II Calculator

















Formula

Quantity Formula
Deflection \(y_{AC}\) \[ y_{AC} = \frac{-x^2}{24EI} \left(w_0 x^2 - 4R_A x - 12M_A \right) \]
Deflection \(y_{CB}\) \[ y_{CB} = \frac{3(M_B + L R_B)x^2 - R_B x^3}{6EI} + \frac{L^2 (3M_B + LR_B) - 3(2M_B + LR_B)Lx}{6EI} \]
Slope \(\theta_{AC}\) \[ \theta_{AC} = \frac{-x}{6EI} \left(w_0 x^2 - 3R_A x - 6M_A \right) \]
Slope \(\theta_{CB}\) \[ \theta_{CB} = \frac{-1}{2EI} \left[ R_B x^2 - 2(M_B + L R_B)x + L(2M_B + L R_B) \right] \]
Moment \(M_{AC}\) \[ M_{AC} = R_A x + M_A - \frac{w_0 x^2}{2} \]
Moment \(M_{CB}\) \[ M_{CB} = R_B (L - x) + M_B \]
Shear \(V_{AC}\) \[ V_{AC} = R_A - w_0 x \]
Shear \(V_{CB}\) \[ V_{CB} = -R_B \]
Reaction \(R_A\) \[ R_A = \frac{w_0 (L + b) a^2}{2L} - \frac{M_A + M_B}{L} \]
Reaction \(R_B\) \[ R_B = \frac{w_0 a^2}{2L} + \frac{M_A - M_B}{L} \]
Where \(M_A\) \[ M_A = \frac{-w_0 a^2}{12L^2} \left(6L^2 - 8La + 3a^2 \right) \]
Where \(M_B\) \[ M_B = \frac{-w_0 a^3}{12L^2} \left(4L - 3a \right) \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024