Fixed-pinned beam - Concentrated load at any point Calculator
Formula
Quantity |
Formula |
Deflection \(y_{AC}\) |
\[
y_{AC} = \frac{-Pbx^2}{12EI L^3} \left( 3L^3 - 3b^2L - 3L^2x + b^2x \right)
\] |
Deflection \(y_{CB}\) |
\[
y_{CB} = \frac{-Pa^2(L-x)}{12EI L^3} \left( 3bL^2 - (2L + b)(L-x)^2 \right)
\] |
Slope \(\theta_{AC}\) |
\[
\theta_{AC} = \frac{-Pbx}{4EI L^3} \left( 2L^3 - 2b^2L - 3L^2x + b^2x \right)
\] |
Slope \(\theta_{CB}\) |
\[
\theta_{CB} = \frac{-Pa^2}{4EI L^3} \left( 2L^3 - 4L^2x - 2bLx + 2Lx^2 + bx^2 \right)
\] |
Moment \(M_{AC}\) |
\[
M_{AC} = \frac{-Pb}{2L^3} \left( L^3 - b^2L - 3L^2x + b^2x \right)
\] |
Moment \(M_{CB}\) |
\[
M_{CB} = \frac{Pa^2}{2L^3} (L-x)(2L+b)
\] |
Shear \(V_{AC}\) |
\[
V_{AC} = \frac{Pb}{2L^3} (3L^2 - b^2)
\] |
Shear \(V_{CB}\) |
\[
V_{CB} = \frac{-Pa^2}{2L^3} (2L + b)
\] |
Reaction \(R_A\) |
\[
R_A = \frac{Pb}{2L^3} (3L^2 - b^2)
\] |
Reaction \(R_B\) |
\[
R_B = \frac{Pa^2}{2L^3} (2L + b)
\] |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |