Home Back

Fixed-pinned beam - Concentrated load at any point Calculator

















Formula

Quantity Formula
Deflection \(y_{AC}\) \[ y_{AC} = \frac{-Pbx^2}{12EI L^3} \left( 3L^3 - 3b^2L - 3L^2x + b^2x \right) \]
Deflection \(y_{CB}\) \[ y_{CB} = \frac{-Pa^2(L-x)}{12EI L^3} \left( 3bL^2 - (2L + b)(L-x)^2 \right) \]
Slope \(\theta_{AC}\) \[ \theta_{AC} = \frac{-Pbx}{4EI L^3} \left( 2L^3 - 2b^2L - 3L^2x + b^2x \right) \]
Slope \(\theta_{CB}\) \[ \theta_{CB} = \frac{-Pa^2}{4EI L^3} \left( 2L^3 - 4L^2x - 2bLx + 2Lx^2 + bx^2 \right) \]
Moment \(M_{AC}\) \[ M_{AC} = \frac{-Pb}{2L^3} \left( L^3 - b^2L - 3L^2x + b^2x \right) \]
Moment \(M_{CB}\) \[ M_{CB} = \frac{Pa^2}{2L^3} (L-x)(2L+b) \]
Shear \(V_{AC}\) \[ V_{AC} = \frac{Pb}{2L^3} (3L^2 - b^2) \]
Shear \(V_{CB}\) \[ V_{CB} = \frac{-Pa^2}{2L^3} (2L + b) \]
Reaction \(R_A\) \[ R_A = \frac{Pb}{2L^3} (3L^2 - b^2) \]
Reaction \(R_B\) \[ R_B = \frac{Pa^2}{2L^3} (2L + b) \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024