Home Back

Fixed-pinned beam - Couple moment Mo at any point Calculator

















Formula

Beam Formulas

Beam Deflection, Slope, Moment, Shear, and Reactions

Property Formula
Deflection (\(y_{AC}\)) \(y_{AC} = \frac{-M_0 x}{4EI L^3} \left[ 2b^2 L - (L-x)(L^2 - b^2) \right]\)
Deflection (\(y_{CB}\)) \(y_{CB} = \frac{-M_0 a(L-x)}{4EI L^3} \left[ -4L^3 - ((L-x)^2 - 3L^2)(L+b) \right]\)
Slope (\(\theta_{AC}\)) \(\theta_{AC} = \frac{-M_0 x}{4EI L^3} \left[ 4b^2 L - (2L-3x)(L^2 - b^2) \right]\)
Slope (\(\theta_{CB}\)) \(\theta_{CB} = \frac{-M_0 a}{4EL^3} \left[ 4L^3 - 3(L+b)(x^2 - 2Lx) \right]\)
Moment (\(M_{AC}\)) \(M_{AC} = \frac{-M_0}{2L^3} \left[ 2b^2 L - (L-3x)(L^2 - b^2) \right]\)
Moment (\(M_{CB}\)) \(M_{CB} = \frac{3M_0 a}{2L^3} (L+b)(L-x)\)
Shear (\(V_{AB}\)) \(V_{AB} = \frac{-3M_0 a}{2L^3} (L+b)\)
Reaction (\(R_A\)) \(R_A = \frac{-3M_0 a}{2L^3} (L+b)\)
Reaction (\(R_B\)) \(R_B = \frac{3M_0 a}{2L^3} (L+b)\)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024