Fixed-pinned beam - Two equal concentrated loads symmetrically placed Calculator
Formula
Property |
Formula |
Deflection (\(y_{AC}\)) |
\(y_{AC} = \frac{Px^2}{12EI L^2} [(3a^2 - 3aL - 2L^2)(L-x) + 2L(3a^2 - 3aL + L^2)]\) |
Deflection (\(y_{CD}\)) |
\(y_{CD} = \frac{-Pa(3(L-a)(L-x)^3 - 6L^2(L-x)^2)}{12EI L^2 a^2} + \frac{-Pa[3L^2(L+a)(L-x) - 2L^2 a]}{12EI L^2}\) |
Deflection (\(y_{DB}\)) |
\(y_{DB} = \frac{-P(L-x)}{12EI L^2} [(3aL - 3a^2 - 2L^2)(L-x)^2 + 3aL^2(L-a)]\) |
Slope (\(\theta_{AC}\)) |
\(\theta_{AC} = \frac{Px}{12EI L^2} [(3a^2 - 3aL - 2L^2)(2L - 3x) + 4L(3a^2 - 3aL + L^2)]\) |
Slope (\(\theta_{CD}\)) |
\(\theta_{CD} = \frac{-Pa}{4EI L^2} [-3(L-a)(L-x)^2 + 4L^2(L-x) - L^2(L+a)]\) |
Slope (\(\theta_{DB}\)) |
\(\theta_{DB} = \frac{P}{4EI L^2} [(3aL - 3a^2 - 2L^2)(L-x)^2 + aL^2(L-a)]\) |
Moment (\(M_{AC}\)) |
\(M_{AC} = \frac{P}{2L^2} [3a^2 L - 3aL^2 + x(2L^2 + 3aL - 3a^2)]\) |
Moment (\(M_{CD}\)) |
\(M_{CD} = \frac{-Pa}{2L^2} [3(L-a)(L-x) - 2L^2]\) |
Moment (\(M_{DB}\)) |
\(M_{DB} = \frac{-P(L-x)}{2L^2} [3aL - 3a^2 - 2L^2]\) |
Shear (\(V_{AC}\)) |
\(V_{AC} = \frac{P}{2L^2} (2L^2 + 3aL - 3a^2)\) |
Shear (\(V_{CD}\)) |
\(V_{CD} = \frac{3Pa(L-a)}{2L^2}\) |
Shear (\(V_{DB}\)) |
\(V_{DB} = \frac{P}{2L^2} (3aL - 3a^2 - 2L^2)\) |
Reaction (\(R_A\)) |
\(R_A = \frac{P}{2L^2} (2L^2 + 3aL - 3a^2)\) |
Reaction (\(R_B\)) |
\(R_B = \frac{P}{2L^2} (3a^2 + 2L^2 - 3aL)\) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |