Fixed-pinned beam - Uniform load partially distributed at fixed end Calculator
Formula
Category |
Formula |
Deflection \( y_{AC} \) |
\[
y_{AC} = \frac{8R_B L(L-x)^3 - 2w_0L(a-x)^4 - w_0a^3(L-x)(L+3b)}{48EI L}
\] |
Deflection \( y_{CB} \) |
\[
y_{CB} = \frac{8R_B L(L-x)^3 - w_0a^3(L-x)(L+3b)}{48EI L}
\] |
Slope \( \theta_{AC} \) |
\[
\theta_{AC} = \frac{-24R_B L(L-x)^2 + 8w_0L(a-x)^3 + w_0a^3(L+3b)}{48EI L}
\] |
Slope \( \theta_{CB} \) |
\[
\theta_{CB} = \frac{-24R_B L(L-x)^2 + w_0a^3(L+3b)}{48EI L}
\] |
Moment \( M_{AC} \) |
\[
M_{AC} = \frac{2R_B(L-x) - w_0(a-x)^2}{2}
\] |
Moment \( M_{CB} \) |
\[
M_{CB} = R_B(L-x)
\] |
Shear \( V_{AC} \) |
\[
V_{AC} = -R_B + w_0(a-x)
\] |
Shear \( V_{CB} \) |
\[
V_{CB} = -R_B
\] |
Reaction \( R_A \) |
\[
R_A = \frac{w_0(L+b)a - 2M_A}{2L}
\] |
Reaction \( R_B \) |
\[
R_B = \frac{w_0a^2 + 2M_A}{2L}
\] |
Where \( M_A \) |
\[
M_A = \frac{-w_0(L+b)^2a^2}{8L^2}
\] |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |