Home Back

Fixed-pinned beam - Uniform load partially distributed at fixed end Calculator















Formula

Category Formula
Deflection \( y_{AC} \) \[ y_{AC} = \frac{8R_B L(L-x)^3 - 2w_0L(a-x)^4 - w_0a^3(L-x)(L+3b)}{48EI L} \]
Deflection \( y_{CB} \) \[ y_{CB} = \frac{8R_B L(L-x)^3 - w_0a^3(L-x)(L+3b)}{48EI L} \]
Slope \( \theta_{AC} \) \[ \theta_{AC} = \frac{-24R_B L(L-x)^2 + 8w_0L(a-x)^3 + w_0a^3(L+3b)}{48EI L} \]
Slope \( \theta_{CB} \) \[ \theta_{CB} = \frac{-24R_B L(L-x)^2 + w_0a^3(L+3b)}{48EI L} \]
Moment \( M_{AC} \) \[ M_{AC} = \frac{2R_B(L-x) - w_0(a-x)^2}{2} \]
Moment \( M_{CB} \) \[ M_{CB} = R_B(L-x) \]
Shear \( V_{AC} \) \[ V_{AC} = -R_B + w_0(a-x) \]
Shear \( V_{CB} \) \[ V_{CB} = -R_B \]
Reaction \( R_A \) \[ R_A = \frac{w_0(L+b)a - 2M_A}{2L} \]
Reaction \( R_B \) \[ R_B = \frac{w_0a^2 + 2M_A}{2L} \]
Where \( M_A \) \[ M_A = \frac{-w_0(L+b)^2a^2}{8L^2} \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024