Home Back

Fixed-pinned beam - Uniform load partially distributed at supported end Calculator

















Formula

Category Formula
Deflection \( y_{AC} \) \[ y_{AC} = \frac{x^2}{6EI} \left( R_A x + 3M_A \right) \]
Deflection \( y_{CB} \) \[ y_{CB} = \frac{4R_B L(L-x)^3 - w_0L(L-x)^4}{24EI L} + \frac{-w_0b^2(L-x)\left(bL + 3ab + 6a^2\right)}{48EI L} \]
Slope \( \theta_{AC} \) \[ \theta_{AC} = \frac{x}{2EI} \left( R_A x + 2M_A \right) \]
Slope \( \theta_{CB} \) \[ \theta_{CB} = \frac{-3R_B L(L-x)^2 + w_0L(L-x)^3}{6EI L} + \frac{w_0b^2 \left(bL + 3ab + 6a^2\right)}{48EI L} \]
Moment \( M_{AC} \) \[ M_{AC} = R_A x + M_A \]
Moment \( M_{CB} \) \[ M_{CB} = \frac{2R_B(L-x) - w_0(L-x)^2}{2} \]
Shear \( V_{AC} \) \[ V_{AC} = R_A \]
Shear \( V_{CB} \) \[ V_{CB} = -R_B + w_0(L-x) \]
Reaction \( R_A \) \[ R_A = \frac{w_0b^2 - 2M_A}{2L} \]
Reaction \( R_B \) \[ R_B = \frac{w_0\left(2a + b\right)b + 2M_A}{2L} \]
Where \( M_A \) \[ M_A = \frac{-w_0b^2}{16L^2} \left[2L + b)(L+a) - b^2\right] \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024