Home Back

Fixed-pinned beam - Uniformly distributed load Calculator













Formula

Category Formula
Deflection \( y_{AB} \) \[ y_{AB} = \frac{-w_0x^2}{48EI} \left( 3L^2 - 5Lx + 2x^2 \right) \]
Slope \( \theta_{AB} \) \[ \theta_{AB} = \frac{-w_0x}{48EI} \left( 6L^2 - 15Lx + 8x^2 \right) \]
Moment \( M_{AB} \) \[ M_{AB} = \frac{-w_0}{8} \left( L^2 - 5Lx + 4x^2 \right) \]
Shear \( V_{AB} \) \[ V_{AB} = \frac{w_0}{8} \left( 5L - 8x \right) \]
Reactions \( R_A \), \( R_B \) \[ R_A = \frac{5w_0L}{8}, \quad R_B = \frac{3w_0L}{8} \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024