Fixed-pinned beam - Uniformly distributed load Calculator
Formula
Category |
Formula |
Deflection \( y_{AB} \) |
\[
y_{AB} = \frac{-w_0x^2}{48EI} \left( 3L^2 - 5Lx + 2x^2 \right)
\] |
Slope \( \theta_{AB} \) |
\[
\theta_{AB} = \frac{-w_0x}{48EI} \left( 6L^2 - 15Lx + 8x^2 \right)
\] |
Moment \( M_{AB} \) |
\[
M_{AB} = \frac{-w_0}{8} \left( L^2 - 5Lx + 4x^2 \right)
\] |
Shear \( V_{AB} \) |
\[
V_{AB} = \frac{w_0}{8} \left( 5L - 8x \right)
\] |
Reactions \( R_A \), \( R_B \) |
\[
R_A = \frac{5w_0L}{8}, \quad R_B = \frac{3w_0L}{8}
\] |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |