Overhanging beam - Concentrated load at any point between supports Calculator
Formula
Category |
Formula |
Deflection \( y_{AC} \) |
\[
y_{AC} = \frac{-Pbx}{6LEI} \left( L^2 - b^2 - x^2 \right)
\] |
Deflection \( y_{CB} \) |
\[
y_{CB} = \frac{-Pa(L-x)}{6LEI} \left( 2Lx - a^2 - x^2 \right)
\] |
Deflection \( y_{BD} \) |
\[
y_{BD} = \frac{Pabx_1}{6LEI} \left( L + a \right)
\] |
Slope \( \theta_{AC} \) |
\[
\theta_{AC} = \frac{-Pb}{6LEI} \left( L^2 - b^2 - 3x^2 \right)
\] |
Slope \( \theta_{CB} \) |
\[
\theta_{CB} = \frac{-Pa}{6LEI} \left( 2L^2 - 6Lx + a^2 + 3x^2 \right)
\] |
Slope \( \theta_{BD} \) |
\[
\theta_{BD} = \frac{Pab(L+a)}{6LEI}
\] |
Moment \( M_{AC} \) |
\[
M_{AC} = \frac{Pbx}{L}
\] |
Moment \( M_{CB} \) |
\[
M_{CB} = \frac{Pa}{L} (L - x)
\] |
Moment \( M_{BD} \) |
\[
M_{BD} = 0
\] |
Shear \( V_{AC} \) |
\[
V_{AC} = \frac{Pb}{L}
\] |
Shear \( V_{CB} \) |
\[
V_{CB} = \frac{-Pa}{L}
\] |
Shear \( V_{BD} \) |
\[
V_{BD} = 0
\] |
Reactions \( R_A \), \( R_B \) |
\[
R_A = \frac{Pb}{L}, \quad R_B = \frac{Pa}{L}
\] |
Where \( x_1 \) |
\[
x_1 = x - L
\] |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |