Home Back

Overhanging beam - Concentrated load at any point between supports Calculator



















Formula

Category Formula
Deflection \( y_{AC} \) \[ y_{AC} = \frac{-Pbx}{6LEI} \left( L^2 - b^2 - x^2 \right) \]
Deflection \( y_{CB} \) \[ y_{CB} = \frac{-Pa(L-x)}{6LEI} \left( 2Lx - a^2 - x^2 \right) \]
Deflection \( y_{BD} \) \[ y_{BD} = \frac{Pabx_1}{6LEI} \left( L + a \right) \]
Slope \( \theta_{AC} \) \[ \theta_{AC} = \frac{-Pb}{6LEI} \left( L^2 - b^2 - 3x^2 \right) \]
Slope \( \theta_{CB} \) \[ \theta_{CB} = \frac{-Pa}{6LEI} \left( 2L^2 - 6Lx + a^2 + 3x^2 \right) \]
Slope \( \theta_{BD} \) \[ \theta_{BD} = \frac{Pab(L+a)}{6LEI} \]
Moment \( M_{AC} \) \[ M_{AC} = \frac{Pbx}{L} \]
Moment \( M_{CB} \) \[ M_{CB} = \frac{Pa}{L} (L - x) \]
Moment \( M_{BD} \) \[ M_{BD} = 0 \]
Shear \( V_{AC} \) \[ V_{AC} = \frac{Pb}{L} \]
Shear \( V_{CB} \) \[ V_{CB} = \frac{-Pa}{L} \]
Shear \( V_{BD} \) \[ V_{BD} = 0 \]
Reactions \( R_A \), \( R_B \) \[ R_A = \frac{Pb}{L}, \quad R_B = \frac{Pa}{L} \]
Where \( x_1 \) \[ x_1 = x - L \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024