Home Back

Overhanging beam - Uniformly distributed load on overhang Calculator















Results:



Formula

Category Formula
Deflection \( y_{AB} \) \[ y_{AB} = \frac{w_{0}a^2x}{12LEI} \left( L^2 - x^2 \right) \]
Deflection \( y_{BC} \) \[ y_{BC} = \frac{-w_{0}x_1}{24EI} \left( 4a^2L + 6a^2x_1 - 4ax_1^2 + x_1^3 \right) \]
Slope \( \theta_{AB} \) \[ \theta_{AB} = \frac{w_{0}a^2}{12LEI} \left( L^2 - 3x^2 \right) \]
Slope \( \theta_{BC} \) \[ \theta_{BC} = \frac{-w_{0}}{6EI} \left( a^2L + 3a^2x_1 - 3ax_1^2 + x_1^3 \right) \]
Moment \( M_{AB} \) \[ M_{AB} = \frac{-w_{0}a^2x}{2L} \]
Moment \( M_{BC} \) \[ M_{BC} = \frac{-w_{0}}{2} \left( a - x_1 \right)^2 \]
Shear \( V_{AB} \) \[ V_{AB} = \frac{-w_{0}a^2}{2L} \]
Shear \( V_{BC} \) \[ V_{BC} = w_{0} \left( a - x_1 \right) \]
Reactions \( R_A \), \( R_B \) \[ R_A = \frac{-w_{0}a^2}{2I}, \quad R_B = \frac{w_{0}(2L + a)a}{2L} \]
Where \( x_1 \) \[ x_1 = x - L \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024