Home Back

Simple beam - Concentrated load at any point Calculator

















Formula

Deflection (AC) \( y_{\mathrm{AC}} = \frac{-Pbx}{6LEI}(L^{2}-b^{2}-x^{2}) \)
Deflection (CB) \( y_{\mathrm{CB}} = \frac{-Pa(L-x)}{6LEI}\left[L^{2}-a^{2}-(L-x)^{2}\right] \)
Slope (AC) \( \theta_{\mathrm{AC}} = \frac{-Pb}{6LEI}(L^{2}-b^{2}-3x^{2}) \)
Slope (CB) \( \theta_{\mathrm{CB}} = \frac{Pa}{6LEI}\left[L^{2}-a^{2}-3(L-x)^{2}\right] \)
Slope at A \( \theta_{\mathrm{A}} = \frac{-Pb(L^{2}-b^{2})}{6LEI} \)
Slope at B \( \theta_{\mathrm{B}} = \frac{Pa}{6LEI}(L^{2}-a^{2}) \)
Moment (AC) \( M_{\mathrm{AC}} = \frac{Pbx}{L} \)
Moment (CB) \( M_{\mathrm{CB}} = \frac{Pa(L-x)}{L} \)
Shear (AC) \( V_{\mathrm{AC}} = V_{\mathrm{A}} = \frac{Pb}{L} \)
Shear (CB) \( V_{\mathrm{CB}} = V_{\mathrm{B}} = \frac{-Pa}{L} \)
Reactions (A) \( R_{_A} = \frac{Pb}{L} \)
Reactions (B) \( R_{_B} = \frac{Pa}{L} \)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024