Home Back

Simple beam - Concentrated load at center Calculator













Results:



Formula

Deflection (AC) \( y_{\mathrm{AC}} = \frac{-Px}{48EI}(3L^{2}-4x^{2}) \)
Deflection (CB) \( y_{\mathrm{CB}} = \frac{-P(L-x)}{48EI}(3L^{2}-4(L-x)^{2}) \)
Maximum Deflection \( y_{\mathrm{MAX}} = y_{\mathrm{C}} = \frac{-PL^{3}}{48EI} \quad \mathrm{at} \quad x = \frac{L}{2} \)
Slope (AC) \( \theta_{\mathrm{AC}} = \frac{-P}{16EI}(L^{2}-4x^{2}) \)
Slope (CB) \( \theta_{\mathrm{CB}} = \frac{-P}{16EI}(4x^{2}-8Lx+3L^{2}) \)
Slope at A and B \( \theta_{\mathrm{A}} = -\theta_{\mathrm{B}} = \frac{PL^{2}}{16EI} \)
Moment (AC) \( M_{\mathrm{AC}} = \frac{Px}{2} \)
Moment (CB) \( M_{\mathrm{CB}} = \frac{P(L-x)}{2} \)
Shear (AC) \( V_{\mathrm{AC}} = V_{\mathrm{A}} = \frac{P}{2} \)
Shear (CB) \( V_{\mathrm{CB}} = V_{\mathrm{B}} = \frac{-P}{2} \)
Reactions \( R_{\mathrm{A}} = R_{\mathrm{B}} = \frac{P}{2} \)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024