Home Back

Simple beam - Couple moment Mo at center Calculator











Tips: a = b = 0.5L




Results:



Formula

Deflection (AC) \( y_{\mathrm{AC}} = \frac{-M_0 x}{24 L E I}\left(L^2-4 x^2\right) \)
Deflection (CB) \( y_{\mathrm{CB}} = \frac{M_0(L-x)}{24 L E I}\left(L^2-4(L-x)^2\right) \)
Slope (AC) \( \theta_{\mathrm{AC}} = \frac{-M_0}{24 L E I}\left(L^2-12 x^2\right) \)
Slope (CB) \( \theta_{\mathrm{CB}} = \frac{M_0}{24 L E I}\left(12(L-x)^2-L^2\right) \)
Slope at A \( \theta_{\mathrm{A}} = \frac{-M_0}{6 L E I}\left(L^2-3 b^2\right) \)
Slope at B \( \theta_{\mathrm{B}} = \frac{M_0}{6 L E I}\left(-L^2+3 a^2\right) \)
Moment (AC) \( M_{\mathrm{AC}} = \frac{M_0 x}{L} \)
Moment (CB) \( M_{\mathrm{CB}} = \frac{-M_0}{L}(L-x) \)
Shear (AC) \( V_{\mathrm{AC}} = \frac{M_0}{L} \)
Shear (CB) \( V_{\mathrm{CB}} = \frac{M_0}{L} \)
Reactions \( R_{\mathrm{A}} = \frac{M_0}{L} \quad R_{\mathrm{B}} = \frac{-M_0}{L} \)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024