Home Back

Simple beam - Couple moment Mo at left end I Calculator













Results:



Formula

Deflection (AB) \( y_{\mathrm{AB}} = \frac{M_0 x}{6 L E I}\left(2 L^2-3 L x+x^2\right) \)
Maximum Deflection \( y_{\mathrm{MAX}} = \frac{M_0 L^2}{9 \sqrt{3} E I} \quad \text{at} \quad x = \left(\frac{3-\sqrt{3}}{3}\right) L \)
Slope (AB) \( \theta_{\mathrm{AB}} = \frac{M_0}{6 L E I}\left(2 L^2-6 L x+3 x^2\right) \)
Slope at A \( \theta_{\mathrm{A}} = \frac{M_0 L}{3 E I} \)
Slope at B \( \theta_{\mathrm{B}} = \frac{-M_0 L}{6 E I} \)
Moment (AB) \( M_{\mathrm{AB}} = \frac{-M_0}{L}(L-x) \)
Shear (AB) \( V_{\mathrm{AB}} = \frac{M_0}{L} \)
Reactions \( R_{\mathrm{A}} = \frac{M_0}{L} \quad R_{\mathrm{B}} = \frac{-M_0}{L} \)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024