Simple beam - Couple moment Mo at left end II Calculator
Formula
Deflection (AB) |
\( y_{\mathrm{AB}} = \frac{-M_0 x}{6 L E I}\left(2 L^2-3 L x+x^2\right) \) |
Maximum Deflection |
\( y_{\mathrm{MAX}} = \frac{-M_0 L^2}{9 \sqrt{3} E I} \quad \text{at} \quad x = \left(\frac{3-\sqrt{3}}{3}\right) L \) |
Slope (AB) |
\( \theta_{\mathrm{AB}} = \frac{-M_0}{6 L E I}\left(2 L^2-6 L x+3 x^2\right) \) |
Slope at A |
\( \theta_{\mathrm{A}} = \frac{-M_0 L}{3 E I} \) |
Slope at B |
\( \theta_{\mathrm{B}} = \frac{M_0 L}{6 E I} \) |
Moment (AB) |
\( M_{\mathrm{AB}} = \frac{M_0}{L}(L-x) \) |
Shear (AB) |
\( V_{\mathrm{AB}} = \frac{-M_0}{L} \) |
Reactions |
\( R_{\mathrm{A}} = \frac{-M_0}{L} \quad R_{\mathrm{B}} = \frac{M_0}{L} \) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |