Simple beam - Couple moments M1 and M2 at each end I Calculator
Formula
Deflection (AB) |
\( y_{\mathrm{AB}} = \frac{-x(L-x)}{6 L E I}\left[\left(M_1-M_2\right) x-\left(2 M_1+M_2\right) L\right] \) |
Slope (AB) |
\[
\theta_{\mathrm{AB}} = \frac{1}{6 L E I}\left[\left(M_1-M_2\right)\left(3 x^2-2 L x\right)-\left(2 M_1+M_2\right)\left(2 L x-L^2\right)\right]
\]
|
Moment (AB) |
\( M_{\mathrm{AB}} = \frac{1}{L}\left[\left(M_1-M_2\right) x-L M_1\right] \) |
Shear (AB) |
\( V_{\mathrm{AB}} = \frac{M_1-M_2}{L} \) |
Reactions |
\( R_{\mathrm{A}} = \frac{M_1-M_2}{L} \quad R_{\mathrm{B}} = \frac{M_2-M_1}{L} \) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |