Home Back

Simple beam - Couple moments M1 and M2 at each end II Calculator















Formula

Deflection (AB) \( y_{\mathrm{AB}} = \frac{-x(L-x)}{6 L E I}\left[\left(M_1+M_2\right) x-\left(2 M_1-M_2\right) L\right] \)
Slope (AB) \[ \theta_{\mathrm{AB}} = \frac{1}{6 L E I}\left[\left(M_1+M_2\right)\left(3 x^2-2 L x\right)-\left(2 M_1-M_2\right)\left(2 L x-L^2\right)\right] \]
Moment (AB) \( M_{\mathrm{AB}} = \frac{1}{L}\left[\left(M_1+M_2\right) x-L M_1\right] \)
Shear (AB) \( V_{\mathrm{AB}} = \frac{M_1+M_2}{L} \)
Reactions \( R_{\mathrm{A}} = \frac{M_1+M_2}{L} \quad R_{\mathrm{B}} = \frac{-M_1-M_2}{L} \)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024