Home Back

Simple beam - Load increasing uniformly to center Calculator













Formula

Deflection (AC) \[ y_{\mathrm{AC}} = \frac{-w_0 x}{960 L E I}\left(5 L^2 - 4 x^2\right)^2 \]
Deflection (CB) \[ y_{\mathrm{CB}} = \frac{-w_0(L-x)}{960 L E I}\left(5 L^2 - 4 (L-x)^2\right)^2 \]
Maximum Deflection \[ y_{\mathrm{MAX}} = \frac{-w_0 L^4}{120 E I} \quad \text{at} \quad x = \frac{L}{2} \]
Slope No slope formula provided in the text
Moment (AC) \[ M_{\mathrm{AC}} = \frac{w_0}{12 L}\left(3 L^2 x - 4 x^3\right) \]
Moment (CB) \[ M_{\mathrm{CB}} = \frac{w_0(L-x)}{12 L}\left(3 L^2 - 4 (L-x)^2\right) \]
Shear (AC) \[ V_{\mathrm{AC}} = \frac{w_0}{4 L}\left(L^2 - 4 x^2\right) \]
Shear (CB) \[ V_{\mathrm{CB}} = \frac{-w_0}{4 L}\left(L^2 - 4 (L-x)^2\right) \]
Reactions \( R_{\mathrm{A}} = R_{\mathrm{B}} = \frac{w_0 L}{4} \)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024