Simple beam - Load increasing uniformly to center Calculator
Formula
Deflection (AC) |
\[
y_{\mathrm{AC}} = \frac{-w_0 x}{960 L E I}\left(5 L^2 - 4 x^2\right)^2
\]
|
Deflection (CB) |
\[
y_{\mathrm{CB}} = \frac{-w_0(L-x)}{960 L E I}\left(5 L^2 - 4 (L-x)^2\right)^2
\]
|
Maximum Deflection |
\[
y_{\mathrm{MAX}} = \frac{-w_0 L^4}{120 E I} \quad \text{at} \quad x = \frac{L}{2}
\]
|
Slope |
No slope formula provided in the text |
Moment (AC) |
\[
M_{\mathrm{AC}} = \frac{w_0}{12 L}\left(3 L^2 x - 4 x^3\right)
\]
|
Moment (CB) |
\[
M_{\mathrm{CB}} = \frac{w_0(L-x)}{12 L}\left(3 L^2 - 4 (L-x)^2\right)
\]
|
Shear (AC) |
\[
V_{\mathrm{AC}} = \frac{w_0}{4 L}\left(L^2 - 4 x^2\right)
\]
|
Shear (CB) |
\[
V_{\mathrm{CB}} = \frac{-w_0}{4 L}\left(L^2 - 4 (L-x)^2\right)
\]
|
Reactions |
\( R_{\mathrm{A}} = R_{\mathrm{B}} = \frac{w_0 L}{4} \) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |