Simple beam - Load increasing uniformly to right end Calculator
Formula
Deflection (AB) |
\[
y_{\mathrm{AB}} = \frac{-w_{0} x}{360 L E I}\left(7 L^{4}-10 L^{2} x^{2}+3 x^{4}\right)
\]
|
Maximum Deflection |
\[
y_{\mathrm{MAX}} = -0.00652 \frac{w_{0} L^{4}}{E I} \quad \text{at} \quad x = 0.5193 L
\]
|
Slope (AB) |
\[
\theta_{\mathrm{AB}} = \frac{-w_{0}}{360 L E I}\left(7 L^{4}-30 L^{2} x^{2}+15 x^{4}\right)
\]
|
Slope (A and B) |
\[
\theta_{\mathrm{A}} = \frac{-7 w_{0} L^{3}}{360 E I} \quad \theta_{\mathrm{B}} = \frac{w_{0} L^{3}}{45 E I}
\]
|
Moment (AB) |
\( M_{\mathrm{AB}} = \frac{w_{0}}{6 L}\left(L^{2} x - x^{3}\right) \)
|
Shear (AB) |
\[
V_{\mathrm{AB}} = \frac{w_{0}}{6 L}\left(L^{2}-3 x^{2}\right)
\]
|
Reactions |
\( R_{\mathrm{A}} = \frac{w_{0} L}{6} \quad R_{\mathrm{B}} = \frac{2 w_{0} L}{6} \)
|
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |