Home Back

Simple beam - Load increasing uniformly to right end Calculator













Formula

Deflection (AB) \[ y_{\mathrm{AB}} = \frac{-w_{0} x}{360 L E I}\left(7 L^{4}-10 L^{2} x^{2}+3 x^{4}\right) \]
Maximum Deflection \[ y_{\mathrm{MAX}} = -0.00652 \frac{w_{0} L^{4}}{E I} \quad \text{at} \quad x = 0.5193 L \]
Slope (AB) \[ \theta_{\mathrm{AB}} = \frac{-w_{0}}{360 L E I}\left(7 L^{4}-30 L^{2} x^{2}+15 x^{4}\right) \]
Slope (A and B) \[ \theta_{\mathrm{A}} = \frac{-7 w_{0} L^{3}}{360 E I} \quad \theta_{\mathrm{B}} = \frac{w_{0} L^{3}}{45 E I} \]
Moment (AB) \( M_{\mathrm{AB}} = \frac{w_{0}}{6 L}\left(L^{2} x - x^{3}\right) \)
Shear (AB) \[ V_{\mathrm{AB}} = \frac{w_{0}}{6 L}\left(L^{2}-3 x^{2}\right) \]
Reactions \( R_{\mathrm{A}} = \frac{w_{0} L}{6} \quad R_{\mathrm{B}} = \frac{2 w_{0} L}{6} \)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024