Home Back

Simple beam - Sinusoidal distributed load Calculator











Where π = 3.1415926





Formula

Category Formula
Deflection \( y_{AB} \) \[ y_{AB} = \frac{-w_{0}L^4}{\pi^4EI} \sin \frac{\pi x}{L} \]
Deflection at \( x = \frac{L}{2} \) \[ y_{MAx} = \frac{-w_{0}L^4}{\pi^4EI} \quad \text{at } x = \frac{L}{2} \]
Slope \( \theta_{AB} \) \[ \theta_{AB} = \frac{-w_{0}L^3}{\pi^3EI} \cos \frac{\pi x}{L} \]
Slope at Ends \[ \theta_{A} = -\theta_{B} = \frac{-w_{0}L^3}{\pi^3EI} \]
Moment \( M_{AB} \) \[ M_{AB} = \frac{w_{0}L^2}{\pi^2} \sin \frac{\pi x}{L} \]
Shear \( V_{AB} \) \[ V_{AB} = \frac{w_{0}L}{\pi} \cos \frac{\pi x}{L} \]
Shear at Ends \[ V_{A} = -V_{B} = \frac{w_{0}L}{\pi} \]
Reactions \( R_{A}, R_{B} \) \[ R_{A} = R_{B} = \frac{w_{0}L}{\pi} \]

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024