Home Back

Simple beam - Uniform load partially distributed Calculator



















Formula

Quantity Formula
Deflection \(y_{AC}\) \(\frac{R_{A}x^{3}}{6EI} + \alpha x\)
Deflection \(y_{CD}\) \(\frac{R_{A}x^{3}}{6EI} - \frac{w_{0}}{24EI}(x-a)^{4} + \alpha x\)
Deflection \(y_{DB}\) \(\frac{R_{B}(L-x)^{3}}{6EI} + \frac{\beta (L-x)}{L}\)
Slope \(\theta_{AC}\) \(\frac{R_{A}x^{2}}{2EI} + \alpha\)
Slope \(\theta_{CD}\) \(\frac{R_{A}x^{2}}{2EI} - \frac{w_{0}}{6EI}(x-a)^{3} + \alpha\)
Slope \(\theta_{DB}\) \(\frac{-R_{B}(L-x)^{2}}{2EI} - \frac{\beta}{L}\)
Moment \(M_{AC}\) \(R_{A} x\)
Moment \(M_{CD}\) \(R_{A} x - \frac{w_{0}}{2}(x-a)^{2}\)
Moment \(M_{DB}\) \(R_{B}(L-x)\)
Shear \(V_{AC}, V_{A}, V_{C}\) \(R_{A}\)
Shear \(V_{CD}\) \(R_{A} - w_{0}(x-a)\)
Shear \(V_{DB}, V_{D}, V_{B}\) \(-R_{B}\)
Reaction \(R_{A}\) \(\frac{w_{0}b}{2L}(2c+b)\)
Reaction \(R_{B}\) \(\frac{w_{0}b}{2L}(2a+b)\)
\(\alpha\) \(\frac{w_{0}b^{3}L - 6EI\beta - 3R_{B}c^{2}L - 3R_{A}L(a+b)^{2}}{6LEI}\)
\(\beta\) \(\frac{4w_{0}ab^{3} + 3w_{0}b^{4} - 8R_{A}(a+b)^{3} - 12R_{B}c^{2}L + 8R_{B}c^{3}}{24EI}\)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024