Simple beam - Uniform load partially distributed Calculator
Formula
Quantity |
Formula |
Deflection \(y_{AC}\) |
\(\frac{R_{A}x^{3}}{6EI} + \alpha x\) |
Deflection \(y_{CD}\) |
\(\frac{R_{A}x^{3}}{6EI} - \frac{w_{0}}{24EI}(x-a)^{4} + \alpha x\) |
Deflection \(y_{DB}\) |
\(\frac{R_{B}(L-x)^{3}}{6EI} + \frac{\beta (L-x)}{L}\) |
Slope \(\theta_{AC}\) |
\(\frac{R_{A}x^{2}}{2EI} + \alpha\) |
Slope \(\theta_{CD}\) |
\(\frac{R_{A}x^{2}}{2EI} - \frac{w_{0}}{6EI}(x-a)^{3} + \alpha\) |
Slope \(\theta_{DB}\) |
\(\frac{-R_{B}(L-x)^{2}}{2EI} - \frac{\beta}{L}\) |
Moment \(M_{AC}\) |
\(R_{A} x\) |
Moment \(M_{CD}\) |
\(R_{A} x - \frac{w_{0}}{2}(x-a)^{2}\) |
Moment \(M_{DB}\) |
\(R_{B}(L-x)\) |
Shear \(V_{AC}, V_{A}, V_{C}\) |
\(R_{A}\) |
Shear \(V_{CD}\) |
\(R_{A} - w_{0}(x-a)\) |
Shear \(V_{DB}, V_{D}, V_{B}\) |
\(-R_{B}\) |
Reaction \(R_{A}\) |
\(\frac{w_{0}b}{2L}(2c+b)\) |
Reaction \(R_{B}\) |
\(\frac{w_{0}b}{2L}(2a+b)\) |
\(\alpha\) |
\(\frac{w_{0}b^{3}L - 6EI\beta - 3R_{B}c^{2}L - 3R_{A}L(a+b)^{2}}{6LEI}\) |
\(\beta\) |
\(\frac{4w_{0}ab^{3} + 3w_{0}b^{4} - 8R_{A}(a+b)^{3} - 12R_{B}c^{2}L + 8R_{B}c^{3}}{24EI}\) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |