Simple beam - Uniform load partially distributed at left end (I) Calculator
Formula
Quantity |
Formula |
Deflection \(y_{AC}\) |
\(-\frac{w_0 x}{384EI} \left(9L^3 - 24Lx^2 + 16x^3 \right)\) |
Deflection \(y_{CB}\) |
\(-\frac{w_0 L}{384EI} \left(8x^3 - 24Lx^2 + 17L^2x - L^3 \right)\) |
Slope \(\theta_{AC}\) |
\(-\frac{w_0}{384EI} \left(9L^3 - 72Lx^2 + 64x^3 \right)\) |
Slope \(\theta_{CB}\) |
\(-\frac{w_0 L}{384EI} \left(24x^2 - 48Lx + 17L^2 \right)\) |
\(\theta_A\) |
\(-\frac{3w_0 L^3}{128EI}\) |
\(\theta_B\) |
\(\frac{7w_0 L^3}{384EI}\) |
Moment \(M_{AC}\) |
\(\frac{w_0}{8} \left(3Lx - 4x^2 \right)\) |
Moment \(M_{CB}\) |
\(\frac{w_0}{8} \left(L^2 - Lx \right)\) |
Shear \(V_{AC}\) |
\(\frac{w_0}{8} \left(3L - 8x \right)\) |
Shear \(V_{CB}\) |
\(-\frac{w_0 L}{8}\) |
\(V_A = R_A\) |
\(\frac{3w_0 L}{8}\) |
\(V_B = -R_B\) |
\(-\frac{w_0 L}{8}\) |
Reactions \(R_A\) |
\(\frac{3w_0 L}{8}\) |
Reactions \(R_B\) |
\(\frac{w_0 L}{8}\) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |