Home Back

Simple beam - Uniform load partially distributed at left end (I) Calculator













Formula

Quantity Formula
Deflection \(y_{AC}\) \(-\frac{w_0 x}{384EI} \left(9L^3 - 24Lx^2 + 16x^3 \right)\)
Deflection \(y_{CB}\) \(-\frac{w_0 L}{384EI} \left(8x^3 - 24Lx^2 + 17L^2x - L^3 \right)\)
Slope \(\theta_{AC}\) \(-\frac{w_0}{384EI} \left(9L^3 - 72Lx^2 + 64x^3 \right)\)
Slope \(\theta_{CB}\) \(-\frac{w_0 L}{384EI} \left(24x^2 - 48Lx + 17L^2 \right)\)
\(\theta_A\) \(-\frac{3w_0 L^3}{128EI}\)
\(\theta_B\) \(\frac{7w_0 L^3}{384EI}\)
Moment \(M_{AC}\) \(\frac{w_0}{8} \left(3Lx - 4x^2 \right)\)
Moment \(M_{CB}\) \(\frac{w_0}{8} \left(L^2 - Lx \right)\)
Shear \(V_{AC}\) \(\frac{w_0}{8} \left(3L - 8x \right)\)
Shear \(V_{CB}\) \(-\frac{w_0 L}{8}\)
\(V_A = R_A\) \(\frac{3w_0 L}{8}\)
\(V_B = -R_B\) \(-\frac{w_0 L}{8}\)
Reactions \(R_A\) \(\frac{3w_0 L}{8}\)
Reactions \(R_B\) \(\frac{w_0 L}{8}\)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024