Home Back

Simple beam - Uniform load partially distributed at left end (II) Calculator















Formula

Quantity Formula
Deflection \(y_{AC}\) \(-\frac{w_0 x}{24LEI} \left(a^4 - 4a^3L + 4a^2L^2 + 2a^2x^2 - 4aLx^2 + Lx^3 \right)\)
Deflection \(y_{CB}\) \(-\frac{w_0 a^2}{24LEI} \left(-a^2L + 4L^2x + a^2x - 6Lx^2 + 2x^3 \right)\)
Slope \(\theta_{AC}\) \(-\frac{w_0}{24LEI} \left(a^4 - 4a^3L + 4a^2L^2 + 6a^2x^2 - 12aLx^2 + 4Lx^3 \right)\)
Slope \(\theta_{CB}\) \(-\frac{w_0 a^2}{24LEI} \left(4L^2 - 12Lx + 6x^2 \right)\)
Moment \(M_{AC}\) \(-\frac{w_0}{2L} \left(a^2x - 2aLx + Lx^2 \right)\)
Moment \(M_{CB}\) \(\frac{w_0 a^2}{2L} \left(L - x \right)\)
Shear \(V_{AC}\) \(-\frac{w_0}{2L} \left(a^2 - 2aL + 2Lx \right)\)
Shear \(V_{CB} = V_C = V_B\) \(-\frac{w_0 a^2}{2L}\)
Reactions \(R_A\) \(\frac{w_0 a}{2L} \left(2L - a \right)\)
Reactions \(R_B\) \(\frac{w_0 a^2}{2L}\)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024