Simple beam - Uniform load partially distributed at left end (II) Calculator
Formula
Quantity |
Formula |
Deflection \(y_{AC}\) |
\(-\frac{w_0 x}{24LEI} \left(a^4 - 4a^3L + 4a^2L^2 + 2a^2x^2 - 4aLx^2 + Lx^3 \right)\) |
Deflection \(y_{CB}\) |
\(-\frac{w_0 a^2}{24LEI} \left(-a^2L + 4L^2x + a^2x - 6Lx^2 + 2x^3 \right)\) |
Slope \(\theta_{AC}\) |
\(-\frac{w_0}{24LEI} \left(a^4 - 4a^3L + 4a^2L^2 + 6a^2x^2 - 12aLx^2 + 4Lx^3 \right)\) |
Slope \(\theta_{CB}\) |
\(-\frac{w_0 a^2}{24LEI} \left(4L^2 - 12Lx + 6x^2 \right)\) |
Moment \(M_{AC}\) |
\(-\frac{w_0}{2L} \left(a^2x - 2aLx + Lx^2 \right)\) |
Moment \(M_{CB}\) |
\(\frac{w_0 a^2}{2L} \left(L - x \right)\) |
Shear \(V_{AC}\) |
\(-\frac{w_0}{2L} \left(a^2 - 2aL + 2Lx \right)\) |
Shear \(V_{CB} = V_C = V_B\) |
\(-\frac{w_0 a^2}{2L}\) |
Reactions \(R_A\) |
\(\frac{w_0 a}{2L} \left(2L - a \right)\) |
Reactions \(R_B\) |
\(\frac{w_0 a^2}{2L}\) |
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |