Simple beam - Uniformly distributed load Calculator
Formula
Quantity |
Formula |
Notes |
Deflection \(y_{AB}\) |
\(-\frac{w_0 x}{24EI} \left(L^3 - 2Lx^2 + x^3 \right)\) |
|
Maximum Deflection \(y_{\text{MAX}}\) |
\(-\frac{5w_0 L^4}{384EI}\) |
At \(x = \frac{L}{2}\) |
Slope \(\theta_{AB}\) |
\(-\frac{w_0}{24EI} \left(L^3 - 6Lx^2 + 4x^3 \right)\) |
|
Maximum Slope \(\theta_A = -\theta_B\) |
\(-\frac{w_0 L^3}{24EI}\) |
|
Moment \(M_{AB}\) |
\(\frac{w_0 x}{2} \left(L - x \right)\) |
|
Maximum Moment \(M_{\text{MAX}}\) |
\(\frac{w_0 L^2}{8}\) |
At \(x = \frac{L}{2}\) |
Shear \(V_{AB}\) |
\(\frac{w_0}{2} \left(L - 2x \right)\) |
|
Reactions \(R_A = R_B\) |
\(\frac{w_0 L}{2}\) |
|
Definitions
Symbol |
Physical quantity |
Units |
E·I |
Flexural rigidity |
N·m², Pa·m⁴ |
y |
Deflection or deformation |
m |
θ |
Slope, Angle of rotation |
- |
x |
Distance from support (origin) |
m |
L |
Length of beam (without overhang) |
m |
M |
Moment, Bending moment, Couple moment applied |
N·m |
P |
Concentrated load, Point load, Concentrated force |
N |
w |
Distributed load, Load per unit length |
N/m |
R |
Reaction load, reaction force |
N |
V |
Shear force, shear |
N |