Home Back

Simple beam - Uniformly distributed load Calculator













Formula

Quantity Formula Notes
Deflection \(y_{AB}\) \(-\frac{w_0 x}{24EI} \left(L^3 - 2Lx^2 + x^3 \right)\)
Maximum Deflection \(y_{\text{MAX}}\) \(-\frac{5w_0 L^4}{384EI}\) At \(x = \frac{L}{2}\)
Slope \(\theta_{AB}\) \(-\frac{w_0}{24EI} \left(L^3 - 6Lx^2 + 4x^3 \right)\)
Maximum Slope \(\theta_A = -\theta_B\) \(-\frac{w_0 L^3}{24EI}\)
Moment \(M_{AB}\) \(\frac{w_0 x}{2} \left(L - x \right)\)
Maximum Moment \(M_{\text{MAX}}\) \(\frac{w_0 L^2}{8}\) At \(x = \frac{L}{2}\)
Shear \(V_{AB}\) \(\frac{w_0}{2} \left(L - 2x \right)\)
Reactions \(R_A = R_B\) \(\frac{w_0 L}{2}\)

Definitions

Symbol Physical quantity Units
E·I Flexural rigidity N·m², Pa·m⁴
y Deflection or deformation m
θ Slope, Angle of rotation -
x Distance from support (origin) m
L Length of beam (without overhang) m
M Moment, Bending moment, Couple moment applied N·m
P Concentrated load, Point load, Concentrated force N
w Distributed load, Load per unit length N/m
R Reaction load, reaction force N
V Shear force, shear N
Favorite
Beam Deflection Calculator© - All Rights Reserved 2024